
1

Programming The Basic Computer

Chapter 6:

2

Introduction

• A computer system includes both

hardware and software. The designer

should be familiar with both of them.

• This chapter introduces some basic

programming concepts and shows their

relation to the hardware representation of

instructions.

• A program may be : dependent or

independent on the computer that runs it.

3

Instruction Set of the Basic Computer

Symbol Hex code Description
AND 0 or 8 AND M to AC
ADD 1 or 9 Add M to AC, carry to E
LDA 2 or A Load AC from M
STA 3 or B Store AC in M
BUN 4 or C Branch unconditionally to m
BSA 5 or D Save return address in m and branch to m+1
ISZ 6 or E Increment M and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC, carry to E
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080 Turn interrupt on
IOF F040 Turn interrupt off

4

Machine Language

• Program: A list of instructions that direct the

computer to perform a data processing task.

• Many programming languages (C++, JAVA).

However, the computer executes programs when

they are represented internally in binary form.

• Binary code: a binary representation of

instructions and operands as they appear in

computer memory.

• Octal or hexadecimal code: translation of binary

code to octal or hexadecimal representation.

5

Hierarchy of programming languages

• The user uses symbols (Letter, numerals, or
special characters) for the operation, address and
other parts of the instruction code (Symbolic code).

• symbolic code  binary coded instruction

• The translation is done by a special program
called an assembler

• High-level programming language:
C++ : used to write procedures to solve a problem
or implement a task.

• Assembly language: concerned with the computer
hardware behavior.

6

Binary/Hex Code

0 0010 0000 0000 0100
1 0001 0000 0000 0101

10 0011 0000 0000 0110
11 0111 0000 0000 0001

100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

Binary code

Location Instruction Code

• Binary Program to Add Two Numbers:

•It is hard to understand the task of the program

 symbolic code

Location Instruction
000 2004
001 1005
002 3006
003 7001
004 0053
005 FFE9
006 0000
Hexadecimal code

7

Symbolic OP-Code

000 LDA 004 Load 1st operand into AC
001 ADD 005 Add 2nd operand to AC
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 1st operand
005 FFE9 2nd operand (negative)
006 0000 Store sum here

Location Instruction Comments

• Symbolic names of instructions instead of

binary or hexadecimal code.

• The address part of memory-reference and

operands  remain hexadecimal.

• Symbolic programs are easier to handle.

8

Assembly-Language Program

ORG 0 /Origin of program is location 0 LDA

A /Load operand from location A ADD B /Add

operand from location B STA C /Store sum in

location C

HLT /Halt computer

A, DEC 83 /Decimal operand

B, DEC -23 /Decimal operand

C, DEC 0 /Sum stored in location C

END /End of symbolic program

9

Assembly-Language Program

• A further step is to replace:

hexadecimal address  symbolic address,

hexadecimal operand  decimal operand.

If the operands are placed in memory following the

instructions, and if the length of the program is not

known in advance, the numerical location of

operands is not known until the end of program is

reached.

Decimal numbers are more familiar than hex.

equivalents.

10

Assembly Language
• Following the rules of the language  the

programs will be translated correctly.

• Almost every commercial computer has its

own particular assembly language.

11

Rules of the Language
• Each line of an assembly language program is

arranged in three columns called fields:
1- The Label field: May be empty or specify a

symbolic address.

2- The Instruction field: Specifies a machine instruction
or pseudo instruction.

3- The Comment field: May be empty or it may include
a comment.

– Example:

ORG Lab

Lab, ADD op1 / this is an add operation.

Label Instruction comment

Note that Lab is a symbolic address.

12

Cont’
• 1-Symbolic address: Consists of one, two, or

three (maximum) alphanumeric characters.

• The first character must be a letter, the next
two may be letters or numerals.

• A symbolic address in the label field is
terminated by a comma so that it will be
recognized as a label by the assembler.

• Examples: Which of the following is a valid
symbolic address: r2 : Yes; Sum5: No

tmp : Yes.

13

Instruction field

• The instruction field contains:

1- Memory-Reference Instruction (MRI)

2- A register-reference or I/O instruction

(non-MRI)

3- A pseudo instruction with or without an

operand. Ex: ORG, DEC 83

14

1-Memory-Reference Inst.

• Occupies two or three symbols separated
by spaces.

• The first must be a three-letter symbol
defining an MRI operation code. (ADD)

• The second is a symbolic address.

Ex: ADD OPR direct address MRI

• The third (optional)-Letter I to denote an
indirect address instruction

Ex: ADD OPR I Indirect address MRI

15

Memory-Reference Inst. / cont.

• A symbolic address in the instruction field

specifies the memory location of the operand.

• This location MUST be defined somewhere in

the program by appearing again as a label in

the first column. Ex: LDA X1

X1, HEX 40

2-Non-Memory-Reference Inst.

• Does not have an address part.

• It is recognized in the instruction field by one of

the three-letter symbols (CLA, INC, CLE,..).

16

Pseudo instruction

• Not a machine instruction

• It is an instruction to the assembler giving

information about some phase of the

translation

Ex:
ORG N

Hexadecimal number N is the memory loc. for the instruction or

operand listed in the following line

END

Denotes the end of symbolic program

DEC N

Signed decimal number N to be converted to binary

HEX N

Hexadecimal number N to be converted to binary

17

Comment Field

• A line of code may or may not have a comment. (Ex: STA

A0 / storing at A0)

• A comment must be preceded by a slash for the

assembler to recognize the beginning of the comment

field.

18

Example:
• An assembly language program to

subtract two numbers
ORG 100
LDA SUB
CMA
INC
ADD MIN
STA DIF
HLT
DEC 83
DEC -23
HEX 0
END

Instruction

/ Origin of program is location 100
/ Load subtrahend to AC
/ Complement AC
/ Increment AC
/ Add minuend to AC
/ Store difference
/ Halt computer
/ Minuend
/ Subtrahend
/ Difference stored here
/ End of symbolic program

comment

MIN,
SUB,
DIF,

Label

19

TRANSLATION TO BINARY

ORG 100

LDA SUB

CMA

INC

ADD MIN

STA DIF

HLT

DEC 83

DEC -23

HEX 0

END

MIN,

SUB,

DIF,

100 2107

101 7200

102 7020

103 1106

104 3108

105 7001

106 0053

107 FFE9

108 0000

Symbolic Program

Location Content

Hexadecimal Code

20

Address Symbol Table

• The translation process can be simplified if we scan the

entire symbolic program twice.

• No translation is done during the first scan. We just assign

a memory location to each instruction and operand.

• Such assignment defines the address value of labels and

facilitates the translation during the second scan.

21

• ORG & END are not assigned a numerical

location because they do not represent an

instruction or operand.
Address symbol Hex Address

MIN 106

SUB 107

DIF 108

22

Example

LDA SUB

Address mode: direct  I=0

Instruction: LDA  010

Address : SUB  107

Instruction 0 010 107  2107

23

The Assembler
• An Assembler is a program that accepts a

symbolic language and produces its binary

machine language equivalent.

• The input symbolic program :Source program.

• The resulting binary program: Object program.

• Prior to assembly, the program must be stored in

the memory.

• A line of code is stored in consecutive memory

locations with two characters in each location.

(each character 8 bits) memory word 16 bits

24

Example: storing the symbolic program in

Memory
• PL3, LDA SUB I

• By referring to the ASCII code table, we get:

Memory

word
Symbol Hex code

1 P L 50 4C

2 3 , 33 2C

3 L D 4C 44

4 A 41 20

5 S U 53 55

6 B 42 20

7 I CR 49 0D

25

First Pass
• The assembler scans the symbolic program

twice.

• First pass: generates an “Address Symbol

Table” that connects all user-defined address

symbols with their binary equivalent value.

• Second Pass: Binary translation

26

First Pass /cont.

• To keep track of instruction locations: the

assembler uses a memory word called a

location counter (LC).

• LC stores the value of the memory

location assigned to the instruction or

operand presently being processed.

• LC is initialized to the first location using

the ORG pseudo instruction. If there is no

ORG LC = 0.

27

First Pass/ cont.

First pass

LC := 0

Scan next line of code Set LC

Label
no

yes

yes

no
ORG

Store symbol
in address-
symbol table
together with
value of LC

END

Increment LC

Go to
second
pass

no

yes

28

Second Pass

• Machine instructions are translated in this pass by means

of a table lookup procedure.

• A search of table entries is performed to determine

whether a specific item matches one of the items stored in

the table.

29

Assembler Tables

• Four tables are used:

– Pseudoinstruction table. (ORG, DEC, HEX, END)

– MRI table. (7 symbols for memory reference and

3-bit opcode equivalent)

– Non-MRI table. (18 Reg. & I/O instruction and

16-bit binary code equivalent)

– Address symbol table. (Generated during first pass)

30

Second Pass/ cont.
Second pass

LC <- 0

Scan next line of code
Set LC

yes

yes

ORGPseudo
instr.

yes
END

no

Done

yes

MRI

no

Valid
non-MRI

instr.

no

Convert
operand
to binary
and store
in location
given by LC

no

DEC or
HEX

Error in
line of
code

Store binary
equivalent of
instruction
in location
given by LC

yes

no
Get operation code
and set bits 2-4

Search address-
symbol table for
binary equivalent
of symbol address
and set bits 5-16

I

Set
first

bit to 0

Set
first

bit to 1

yes no

Assemble all parts of
binary instruction and
store in location given by LC

Increment LC

31

Error Diagnostics

• One important task of the assembler is to check for

possible errors in the symbolic program.

Example:

– Invalid machine code symbol.

– A symbolic address that did not appear as

a label.

32

Program Loops

• A sequence of instructions that are executed many times,
each time with a different set of data

• Fortran program to add 100 numbers:

DIMENSION A(100)
INTEGER SUM, A

SUM = 0

DO 3 J = 1, 100

3 SUM = SUM + A(J)

33

Program Loops/ cont.

ORG 100
LDA ADS
STA PTR
LDA NBR
STA CTR
CLA
ADD PTR I
ISZ PTR
ISZ CTR
BUN LOP
STA SUM
HLT
HEX 150
HEX 0
DEC -100
HEX 0
HEX 0
ORG 150
DEC 75
.
.
DEC 23
END

/ Origin of program is HEX 100
/ Load first address of operand
/ Store in pointer
/ Load -100
/ Store in counter
/ Clear AC
/ Add an operand to AC
/ Increment pointer
/ Increment counter
/ Repeat loop again
/ Store sum
/ Halt
/ First address of operands
/ Reserved for a pointer
/ Initial value for a counter
/ Reserved for a counter
/ Sum is stored here
/ Origin of operands is HEX 150
/ First operand

/ Last operand
/ End of symbolic program

LOP,

ADS,
PTR,
NBR,
CTR,
SUM,

34

Programming Arithmetic & Logic Operations

• Software Implementation

- Implementation of an operation with a program using
machine instruction set

- Usually used: when the operation is not included in the
instruction set

• Hardware Implementation

- Implementation of an operation in a computer with one
machine instruction

35

Multiplication

• We will develop a program to multiply two numbers.

• Assume positive numbers and neglect the sign bit for

simplicity.

• Also, assume that the two numbers have no more than 8

significant bits  16-bit product.

36

Multiplication / cont.

Example with four significant digits

0000 1111

0000 1011 0000 0000

0000 1111 0000 1111

0001 1110 0010 1101

0000 0000 0010 1101

0111 1000 1010 0101

1010 0101

X =

Y = X holds the multiplicand
Y holds the multiplier
P holds the product

P

37

cil

CTR  - 8
P  0

E  0

AC  Y

Y  AC

cir EAC

E

P  P + X

E  0

AC  X

cil EAC

X  AC

CTR  CTR + 1

=1=0

CTR
=0

Stop
 0

Example with four significant digits

0000 1111

0000 1011 0000 0000

0000 1111 0000 1111

0001 1110 0010 1101

0000 0000 0010 1101

0111 1000 1010 0101

1010 0101

X =

Y = X holds the multiplicand
Y holds the multiplier
P holds the product

P

38

ORG 100
CLE
LDA Y
CIR
STA Y

SZE
BUN ONE
BUN ZRO

LDA X
ADD P
STA P
CLE
LDA X
CIL
STA X

ISZ CTR
BUN LOP
HLT

DEC -8
HEX 000F

HEX 000B
HEX 0
END

/ Clear E
/ Load multiplier
/ Transfer multiplier bit to E
/ Store shifted multiplier

/ Check if bit is zero
/ Bit is one; goto ONE
/ Bit is zero; goto ZRO

/ Load multiplicand
/ Add to partial product
/ Store partial product
/ Clear E
/ Load multiplicand
/ Shift left
/ Store shifted multiplicand

/ Increment counter
/ Counter not zero; repeat loop
/ Counter is zero; halt

/ This location serves as a counter
/ Multiplicand stored here

/ Multiplier stored here
/ Product formed here

LOP,

ONE,

ZRO,

CTR,
X,

Y,
P,

39

Double Precision Addition
• When two 16-bit unsigned numbers are

multiplied, the result is a 32-bit product that must
be stored in two memory words.

• A number stored in two memory words is said to
have double precision.

• When a partial product is computed, it is
necessary to add a double-precision number to
the shifted multiplicand, which is also double-
precision.

• This provides better accuracy

40

Double Precision Addition / cont.

• One of the double precision numbers is stored in two consecutive

memory locations, AL & AH. The other number is placed in BL &

BH.

• The two low-order portions are added and the carry is transferred

to E. The AC is cleared and E is circulated into the LSB of AC.

• The two high-order portions are added and the sum is stored in

CL & CH.

41

Double Precision Addition / cont.

LDA AL
ADD BL
STA CL
CLA
CIL
ADD AH
ADD BH
STA CH
HLT

AL, _____
AH, _____
BL, _____
BH, _____
CL, _____
CH, _____

/ Load A low
/ Add B low, carry in E
/ Store in C low
/ Clear AC
/ Circulate to bring carry into AC(16)
/ Add A high and carry
/ Add B high
/ Store in C high

/ Location of operands

42

Logic Operations

• All 16 logic operations (table 4-6) can be

implemented using the AND & complement

operations.

• Example: OR : x + y = (x’.y’)’ Demorgan’s

/ Load 1st operand
/ Complement to get A’
/ Store in a temporary location
/ Load 2nd operand B
/ Complement to get B’
/ AND with A’ to get A’ AND B’
/ Complement again to get A OR B

LDA A
CMA
STA TMP
LDA B
CMA
AND TMP
CMA

43

Shift Operations

• The circular shift operations are machine instructions in

the basic computer.

• Logical and Arithmetic shifts can be programmed with a

small number of instructions.

44

Logical Shift Operations

• Logical shift right

CLE

CIR

• Logical shift left

CLE

CIL

45

Arithmetic Shift Operations

• Arithmetic shift right: it is necessary that the sign bit

in the leftmost position remain unchanged. But the

sign bit itself is shifted into the high-order bit

position of the number.

CLE / Clear E to 0

SPA / Skip if AC is positive, E remains 0

CME / AC is negative, set E to 1

CIR / Circulate E and AC

46

Arithmetic Shift Operations /cont.

• Arithmetic shift left: it is necessary that the added bit in

the LSB be 0.

CLE

CIL

• The sign bit must not change during this shift.

• With a circulate instruction, the sign bit moves into E.

47

Arithmetic Shift Operations /cont.

• The sign bit has to be compared with E after the operation

to detect overflow.

• If the two values are equal  No overflow.

• If the two values are not equal  Overflow.

48

Subroutines
• The same piece of code might be written

again in many different parts of a program.

• Write the common code only once.

• Subroutines :A set of common instructions

that can be used in a program many times

• Each time a subroutine is used in the main

program, a branch is made to the beginning

of the subroutine. The branch can be made

from any part of the main program.

49

Subroutines /cont.
• After executing the subroutine, a branch is

made back to the main program.

• It is necessary to store the return address

somewhere in the computer for the

subroutine to know where to return.

• In the basic computer, the link between the

main program and a subroutine is the BSA

instruction.

50

Subroutines example- (CIL 4 times)

ORG 100
LDA X
BSA SH4
STA X
LDA Y
BSA SH4
STA Y
HLT
HEX 1234
HEX 4321

HEX 0
CIL
CIL
CIL
CIL
AND MSK
BUN SH4 I
HEX FFF0
END

/ Main program
/ Load X
/ Branch to subroutine
/ Store shifted number
/ Load Y
/ Branch to subroutine again
/ Store shifted number

/ Subroutine to shift left 4 times
/ Store return address here
/ Circulate left once

/ Circulate left fourth time
/ Set AC(13-16) to zero
/ Return to main program
/ Mask operand

X,
Y,

SH4,

MSK,

100
101
102
103
104
105
106
107
108

109
10A
10B
10C
10D
10E
10F
110

Loc.

51

Subroutines /cont.
• The first memory location of each subroutine

serves as a link between the main program

and the subroutine.

• The procedure for branching to a subroutine

and returning to the main program is referred

to as a subroutine linkage.

• The BSA instruction performs the call.

• The BUN instruction performs the return.

52

Subroutine Parameters and Data Linkage

• When a subroutine is called, the main program must
transfer the data it wishes the subroutine to work with.

• It is necessary for the subroutine to have access to data
from the calling program and to return results to that
program.

• The accumulator can be used for a single input parameter
and a single output parameter.

53

Subroutine Parameters and Data Linkage /cont.

• In computers with multiple processor registers, more parameters

can be transferred this way.

• Another way to transfer data to a subroutine is through the

memory.

• Data are often placed in memory locations following the call.

54

Parameter Linkage

ORG 200

LDA X
BSA OR
HEX 3AF6

STA Y
HLT
HEX 7B95
HEX 0

HEX 0
CMA
STA TMP
LDA OR I
CMA
AND TMP

CMA
ISZ OR
BUN OR I

HEX 0
END

/ Load 1st operand into AC
/ Branch to subroutine OR
/ 2nd operand stored here
/ Subroutine returns here

/ 1st operand stored here
/ Result stored here

/ Subroutine OR
/ Complement 1st operand
/ Store in temporary location
/ Load 2nd operand
/ Complement 2nd operand
/ AND complemented 1st operand
/ Complement again to get OR
/ Increment return address
/ Return to main program
/ Temporary storage

X,
Y,

OR,

TMP,

200
201
202

203
204
205
206

207
208
209
20A
20B
20C

20D
20E
20F

210

Loc.

55

Subroutine Parameters and Data Linkage /cont.

• It is possible to have more than one operand following the

BSA instruction.

• The subroutine must increment the return address stored

in its first location for each operand that it extracts from

the calling program.

56

Data Transfer

• If there is a large amount of data to be transferred, the

data can be placed in a block of storage and the address

of the first item in the block is then used as the linking

parameter.

SUBROUTINE MVE (SOURCE, DEST, N)
DIMENSION SOURCE(N), DEST(N)
DO 20 I = 1, N

DEST(I) = SOURCE(I)
RETURN
END

57

Data transfer
BSA MVE
HEX 100
HEX 200

DEC -16
HLT
HEX 0
LDA MVE I
STA PT1
ISZ MVE
LDA MVE I
STA PT2
ISZ MVE
LDA MVE I

STA CTR
ISZ MVE
LDA PT1 I
STA PT2 I
ISZ PT1
ISZ PT2
ISZ CTR
BUN LOP
BUN MVE I
--
--
--

/ Main program
/ Branch to subroutine
/ 1st address of source data
/ 1st address of destination data

/ Number of items to move

/ Subroutine MVE
/ Bring address of source
/ Store in 1st pointer
/ Increment return address
/ Bring address of destination
/ Store in 2nd pointer
/ Increment return address
/ Bring number of items

/ Store in counter
/ Increment return address
/ Load source item
/ Store in destination
/ Increment source pointer
/ Increment destination pointer
/ Increment counter
/ Repeat 16 times
/ Return to main program

MVE,

LOP,

PT1,
PT2,
CTR,

58

Input-Output Programming

• Users of the computer write programs with symbols that

are defined by the programming language used.

• The symbols are strings of characters and each character

is assigned an 8-bit code so that it can be stored in a

computer memory.

59

Input-Output Programming /cont.

• A binary coded character enters the computer when an

INP instruction is executed.

• A binary coded character is transferred to the output

device when an OUT instruction is executed.

60

Character Input

Program to Input one Character(Byte)

SKI

BUN CIF
INP
OUT
STA CHR

HLT
--

/ Check input flag

/ Flag=0, branch to check again
/ Flag=1, input character
/ Display to ensure correctness
/ Store character

/ Store character here

CIF,

CHR,

61

Character Output

LDA CHR
SKO
BUN COF
OUT

HLT
HEX 0057

/ Load character into AC
/ Check output flag
/ Flag=0, branch to check again
/ Flag=1, output character

/ Character is "W"

COF,

CHR,

Program to Output a Character

62

Character Manipulation
• The binary coded characters that

represent symbols can be manipulated by

computer instructions to achieve various

data-processing tasks.

• One such task may be to pack two

characters in one word.

• This is convenient because each character

occupies 8 bits and a memory word

contains 16 bits.

63

--

SKI
BUN FST
INP
OUT

BSA SH4
BSA SH4
SKI

BUN SCD
INP
OUT
BUN IN2 I

/ Subroutine entry

/ Input 1st character

/ Logical Shift left 4 bits
/ 4 more bits

/ Input 2nd character

/ Return

IN2,

FST,

SCD,

Subroutine to Input 2 Characters and pack into a word

64

Buffer

• The symbolic program is stored in a section of

the memory called the buffer.

• A buffer is a set of consecutive memory

locations that stores data entered via the input

device. Ex: store input characteres in a buffer

LDA ADS

STA PTR
BSA IN2
STA PTR I
ISZ PTR

BUN LOP
HLT
HEX 500

HEX 0

/ Load first address of buffer

/ Initialize pointer
/Go to subroutine IN2
/ Store double character word in buffer
/ Increment pointer

/ Branch to input more characters

/ First address of buffer

/ Location for pointer

LOP,

ADS,

PTR,

65

Table lookup

• A two pass assembler performs the table lookup in the second

pass.

• This is an operation that searches a table to find out if it contains

a given symbol.

• The search may be done by comparing the given symbol with

each of the symbols stored in the table.

66

Table lookup /cont.

• The search terminates when a match occurs or if none of

the symbols match.

• The comparison is done by forming the 2’s complement of

a word and arithmetically adding it to the second word.

• If the result is zero, the two words are equal and a match

occurs. Else, the words are not the same.

67

Table Lookup / cont.

LDA WD1
CMA
INC
ADD WD2

SZA
BUN UEQ
BUN EQL

/ Load first word

/ Form 2’s complement
/ Add second word

/ Skip if AC is zero
/ Branch to “unequal” routine
/ Branch to “equal” routine

WD1,
WD2,

Comparing two words:

68

Program Interrupt
• The running time of input and output

programs is made up primarily of the time

spent by the computer in waiting for the

external device to set its flag.

• The wait loop that checks the flags wastes a

large amount of time.

• Use interrupt facility to notify the computer

when a flag is set  eliminates waiting time.

69

Program Interrupt /cont.

• Data transfer starts upon request from the external
device.

• Only one program can be executed at any given time.

• Running program: is the program currently being
executed

• The interrupt facility allows the running program to
proceed until the input or output device sets its ready flag

70

Program Interrupt /cont.
• When a flag is set to 1: the computer

completes the execution of the instruction in
progress and then acknowledges the interrupt.

• The return address is stored in location 0.

• The instruction in location 1 is performed: this
initiates a service routine for the input or output
transfer.

• The service routine can be stored anywhere in
memory provided a branch to the start of the
routine is stored in location 1.

71

Service Routine

• Must have instructions to perform:

– Save contents of processor registers.

– Check which flag is set.

– Service the device whose flag is set.

– Restore contents of processor registers

– Turn the interrupt facility on.

– Return to the running program.

72

Service Routine /cont.

• The contents of processor registers before and after the

interrupt must be the same.

• Since the registers may be used by the service routine, it

is necessary to save their contents at the beginning of the

routine and restore them at the end.

73

Service Routine /cont.

• The sequence by which flags are checked dictates the

priority assigned to each device.

• The device with higher priority is serviced first.

• Even though two or more flags may be set at the same

time, the devices are serviced on at a time.

74

Service Routine /cont.

• The occurrence of an interrupt disables the facility from further

interrupts.

• The service routine must turn the interrupt on before the return to

the running program.

• The interrupt facility should not be turned on until after the return

address is inserted into the program counter.

75

Interrupt Service Program
-
BUN SRV
CLA
ION
LDA X
ADD Y
STA Z

STA SAC
CIR
STA SE
SKI
BUN NXT
INP
OUT
STA PT1 I
ISZ PT1
SKO
BUN EXT
LDA PT2 I
OUT
ISZ PT2
LDA SE
CIL
LDA SAC
ION
BUN ZRO I
-
-
-
-

/ Return address stored here
/ Branch to service routine
/ Portion of running program
/ Turn on interrupt facility

/ Interrupt occurs here
/ Program returns here after interrupt

/ Interrupt service routine
/ Store content of AC
/ Move E into AC(1)
/ Store content of E
/ Check input flag
/ Flag is off, check next flag
/ Flag is on, input character
/ Print character
/ Store it in input buffer
/ Increment input pointer
/ Check output flag
/ Flag is off, exit
/ Load character from output buffer
/ Output character
/ Increment output pointer
/ Restore value of AC(1)
/ Shift it to E
/ Restore content of AC
/ Turn interrupt on
/ Return to running program
/ AC is stored here
/ E is stored here
/ Pointer of input buffer
/ Pointer of output buffer

ZRO,

SRV,

NXT,

EXT,

SAC,
SE,
PT1,
PT2,

0
1

100
101
102
103
104

200

Loc.

